Numpy: v1.24.0rc2 Release

Release date:
December 3, 2022
Previous version:
v1.24.0rc1 (released November 24, 2022)
Magnitude:
1,266 Diff Delta
Contributors:
10 total committers
Data confidence:
Commits:

31 Commits in this Release

Ordered by the degree to which they evolved the repo in this version.

Authored November 25, 2022
Authored November 25, 2022
Authored November 25, 2022
Authored November 24, 2022
Authored November 25, 2022
Authored November 27, 2022
Authored November 24, 2022
Authored November 28, 2022
Authored November 30, 2022

Top Contributors in v1.24.0rc2

rgommers
charris
mattip
hawkinsp
seberg
WarrenWeckesser
ngoldbaum
mkiffer
stefanv
eltociear

Directory Browser for v1.24.0rc2

We haven't yet finished calculating and confirming the files and directories changed in this release. Please check back soon.

Release Notes Published

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New \"dtype\" and \"casting\" keywords for stacking functions.

See below for the details,

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as np.uint8(-1) giving np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that np.array(-1).astype(np.uint8) continues to work and use C integer overflow logic.

(gh-22393)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0) instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0, np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and [np.histogramdd]{.title-ref}. Use density instead. If normed was passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless dtype=object is passed. This includes very deeply nested sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been removed.

    (gh-22139)

  • Support for cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has been removed. Use np.ma.minimum.reduce() or np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native byte-order) ones to dtype= or signature= in ufuncs will now raise a TypeError. We recommend passing the strings "int8" or scalar types np.int8 since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly. That means that only bool and object are valid values and dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float, np.complex, np.str, and np.int is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)
# is now identical to:
arr[0] = scalar

Previously casting may have produced slightly different answers when using values that could not be represented in the target dtype or when the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with :pynp.array(){.interpreted-text role="func"} or :pyasarray(){.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input array is returned. The following is an example for this on 64bit Linux where long and longlong are the same precision but different dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is now always raised where previously TypeError or RuntimeError was raised. This allows falling back to the buffer protocol or __array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new symbol attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0Β·yΒΉ - 1.0Β·yΒ²

Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g. character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the runtime information of the machine in addition to numpy.show_config which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal. Setting strict=True will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and return a single NaN. Setting equal_nan=False will restore pre-1.21 behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for numpy.stack. To use them, write np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for numpy.vstack. To use them, write np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for numpy.hstack. To use them, write np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random module is initialized at startup with the MT19937 bit generator. The new function set_bit_generator allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function get_bit_generator returns the current bit generator being used by the singleton RandomState. This is provided to simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of Generator. The function default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so that calling functions in the random module will use the same bit generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in the random module will use the new bit generator. The original can be restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements

  • The generated extension modules don\'t use the deprecated NumPy-C API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of signature files are prefixed with f2py_. For example, one should use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support returning assumed length character strings (e.g. character(len=*)) from wrapper functions

A hook to support rewriting f2py internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So integer, intent(in), value :: x in Fortran codes will have correct wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling Generator instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a Generator that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and n=2, but would raise a non-specific exception message for other values of n. Now, it raises a [TypeError]{.title-ref} informing that arange does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and numpy.typing.DTypeLike are now properly marked as runtime checkable, making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use kind="sort" or kind="table" to force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal, numpy.less, numpy.less_equal, numpy.greater and numpy.greater_equal) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a RuntimeWarning and the return value was undefined leading to crashes at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype\'s minimum value and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the input masked array in-place. This makes it behave identically to masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as NpyIter in C now supports allocating all arrays. The iterator shape defaults to () in this case. The operands dtype must be provided, since a \"common dtype\" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5

0f45cfebcb56027a7c9fc14577082789  numpy-1.24.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
c895f8af0f548ba2bbb948119a151cf7  numpy-1.24.0rc2-cp310-cp310-macosx_11_0_arm64.whl
4552d324786e3c05732135c59a73fbc6  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
99e4634eb1474e8c443cd6cee5dbc39e  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f0304cb2aa708dfe1e0aa16cdfa3046d  numpy-1.24.0rc2-cp310-cp310-win32.whl
501424e62329ac7996be850a2fc58963  numpy-1.24.0rc2-cp310-cp310-win_amd64.whl
2b6a65ea122eaffb2f3b5643b1ce1ec4  numpy-1.24.0rc2-cp311-cp311-macosx_10_9_x86_64.whl
865bbc90494b6e9e845ac1eb08ba0377  numpy-1.24.0rc2-cp311-cp311-macosx_11_0_arm64.whl
faa4f8e5050cb7c4319d2c2df23eca05  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
509fbe04ec7941baaedc6502d003b864  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2eb1e8cd4c53ee4046fb0cd858daef80  numpy-1.24.0rc2-cp311-cp311-win32.whl
f5bd22dee1273898598f373b72e40f84  numpy-1.24.0rc2-cp311-cp311-win_amd64.whl
6a7b14b0fcbb33a8a415e27afc856544  numpy-1.24.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
8a26467d235710d2db2bc68ef639318f  numpy-1.24.0rc2-cp38-cp38-macosx_11_0_arm64.whl
e6f08e32041c4e3ca64b8714f2c1f1c8  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7112b8e3f9a46953b0a1e9a670008ed4  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9a7155f0a4a39e17bd70c17331c7e765  numpy-1.24.0rc2-cp38-cp38-win32.whl
cb10d074bf1977d2257209f96465e639  numpy-1.24.0rc2-cp38-cp38-win_amd64.whl
0fa5a0f9dfbb817061bd3b438a0e0b19  numpy-1.24.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
39bd8e522bf703f0be585a7b30861fd0  numpy-1.24.0rc2-cp39-cp39-macosx_11_0_arm64.whl
a8907c987c7b5f66891cf294dbba4347  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a5f46715e8b93c7b86f275c7ae3f160  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
04daa21b43702b1bf5431731d16a59d6  numpy-1.24.0rc2-cp39-cp39-win32.whl
046ebc9bb672392443280192e8c71a6d  numpy-1.24.0rc2-cp39-cp39-win_amd64.whl
e44b5d937de603499ccf29d96e308cd7  numpy-1.24.0rc2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
6a0c0372e7d4db195dd8e889d70de00b  numpy-1.24.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
946e249ee0dab46c57b5b913ccfe80cd  numpy-1.24.0rc2-pp38-pypy38_pp73-win_amd64.whl
0974533ba76def71daa78cd0df753e1e  numpy-1.24.0rc2.tar.gz

SHA256

dce26877ad77c9722e35c9ca82e9272cb6d10aa0a4f95e633b13511dcf549b5f  numpy-1.24.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
0983fb5b475406cd6aa2f4f364768fb388e1211fd94fb496ad49e214d5c79792  numpy-1.24.0rc2-cp310-cp310-macosx_11_0_arm64.whl
df9a9c28ad95c87b4047e1acd45715eb430fb5f6df39556279b3f36ce75c697b  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdd44d3133c800792f2beda0e24f86b3ae06a8a31172395c650d13e4c05d1d5b  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab18e29ad73ce560747de10ebe75f145be3026b7480e76d7a5314c2bef0fc831  numpy-1.24.0rc2-cp310-cp310-win32.whl
1651a59e5d8dbb09b84254e358aa2fe10431df5a92ddefb1ac20208c75bd2fa2  numpy-1.24.0rc2-cp310-cp310-win_amd64.whl
146d7e5ee04433ce8eb504d0dcffff524a5ba759bd1fb9c73189c3436b04d59c  numpy-1.24.0rc2-cp311-cp311-macosx_10_9_x86_64.whl
a68647adc9945eac88f4fce96195177c2a81577baa448c1c1bbd5751c550e8b5  numpy-1.24.0rc2-cp311-cp311-macosx_11_0_arm64.whl
50346a0d81444f420518c7d6996524d7e559cdfa2e41886381442f012593590e  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8bc069b085289f3b7a578519504962330fab91459a847195b914f69b9170b75c  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07c0f3b174970054c613c33e90627fbafbc5d9115adf8829658b833278e7017c  numpy-1.24.0rc2-cp311-cp311-win32.whl
1d6198ee7eb45e5d9cc8a5c9102b734f0c5683c0e440ae7cfad90ad8cb9316d2  numpy-1.24.0rc2-cp311-cp311-win_amd64.whl
e948367a0b9aa68a081c4cf817751c6d0d589a37ce6bb40fea39a882b4858834  numpy-1.24.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
e4909946cf43ff713f95780d483793d8fb23c1559686a8221e91f89e5ecceea0  numpy-1.24.0rc2-cp38-cp38-macosx_11_0_arm64.whl
0704c94f89bf8d5d4f5722b305a29cbb1ad91c7f3dcdcda61cb80d6e5443365b  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
748285bca9fb0f06a16034d4b9c6dce77997d2ccddf769aaeb4760fea4752ea2  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b6e807f59c1f71e74603a2a88b0b997d7f43e002f6e5f7f55649c6e07738f1ad  numpy-1.24.0rc2-cp38-cp38-win32.whl
0a5c85f625751b77a6f613db2de5f62514024a7ea6d3be534421746e094b2121  numpy-1.24.0rc2-cp38-cp38-win_amd64.whl
5db5f7a8f150614684c34449010c15b61df8d8e5fc0cd79ce30e82f493598599  numpy-1.24.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
6f34b8f2996ebad781cd878276e03d247f0129640fb0ae76bb16addc4df822d1  numpy-1.24.0rc2-cp39-cp39-macosx_11_0_arm64.whl
e30689dd418f2db3d2d3039cb08011047d27708fdc24c592d56fa58aaeb01672  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
925d39290878d680eb8dd690f969faa0a4956b7bd77daf3573486eb39d8e5724  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a2495e48db12f546e4e3f9ea1f665390828098344bf63bca50309a68d713d302  numpy-1.24.0rc2-cp39-cp39-win32.whl
ea9ca0989fdd42d3320a94f540f317fb615be9ceab75a07078a84b9933582da5  numpy-1.24.0rc2-cp39-cp39-win_amd64.whl
c9ff51e627e7584eb7ee09f6fe494862e45f796e53b5ee7267d3d5633a79dac6  numpy-1.24.0rc2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
b4eca15593bec5ef3e2e05c157ff1be3990d04a862f49fd46b4e527ff390b778  numpy-1.24.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b45bdcde72ce02a92ae183ef211bcf7f04e15d5e3df6714866de66d8ec8cc822  numpy-1.24.0rc2-pp38-pypy38_pp73-win_amd64.whl
c943c61fa708a6225e199aff755b2c3f5a353a2bbb726e10334a05b8e1fc030b  numpy-1.24.0rc2.tar.gz